
PRERELEASE — NOT FOR PUBLIC DISTRIBUTION — ©1998 EXPOTECH, INC.

Software Design Using CRC Cards
Harold Halbleib, Excel Software

Introduction
Many notations, methods and books

have been published in recent years regard-
ing analysis and design of object-oriented
software. While popular object-oriented
notations and methods like Booch, OMT,
Shlaer/Mellor and UML are becoming
more prevalent in large organizations, the
learning curve and overhead of formal
methods can be excessive for small projects.

CRC cards (class, responsibility, col-
laboration) provide a simple design
alternative that can be quickly applied to
any object-oriented project. The short
learning curve makes this responsibility
driven design approach a natural choice for
small projects. CRC cards are also highly
effective as a front end to other design
methods.

The software development process
involves requirements gathering, software
design, implementation and testing. The
typical project begins with an analysis of
the customer problem and the formulation
of a list of requirements or specifications to
solve the problem. Customer and devel-
oper understanding and acceptance of the

requirements is key to the project's success.
The customer's solution usually consists of
one or more programs to be designed and
implemented. The design phase of the
development effort can be largely centered
around the creation and refinement of CRC
cards. When the design is complete, infor-
mation can be listed to text to serve as a
coding specification for the implementation
phase of the project. The testing phase
ensures that the solution fullfills the cus-
tomer requirements.

It is not uncommon for larger, object-
oriented projects to take an iterative
approach, particularly during the design
and implementation phase. To reduce risk,
it is usually best to identify the more impor-
tant CRC cards for the overall project and
divide the project into smaller functional
areas. When refining the design and writ-
ing the code, start with those functional
areas having the biggest impact on the
project success or presenting the greatest
risks.

In its simplest form, CRC cards can be
applied to a design project using a stack of
index cards and a pencil. Each card identi-

Figure 1: CRC Cards Created With QuickCRC

PRERELEASE — NOT FOR PUBLIC DISTRIBUTION — ©1998 EXPOTECH, INC.

fies a class, its properties and relationships
with other cards. As a design grows, an
automated tool to support CRC cards saves
time and can reduce design errors. As
information is entered or modified, refer-
ences between cards can be instantly
updated. Verification checks ensure con-
sistency and completeness. Design
scenarios can be identified and simulated.
An automated tool can graphically illus-
trate relationships between cards, making it
easier to manage large projects.

General Concepts
The CRC card shown below represents

an object class and its properties. The
words card, class and object are often used
interchangeably although technically they
are not the same thing. A class is a type
from which an object is instantiated and a
card is a collection of information about a
class.

Figure 2: Front Side of CRC Card

The card, named TWindow for the
class it represents, currently has one
superclass named TEventHandler and no
subclasses. This class has several responsi-
bilities. A responsibility represents a
function the object must perform for itself
or to service the requests of other objects.
This card must collaborate with other cards
to accomplish some of its responsibilities,
for example, TWindow’s Draw responsibil-
ity collaborates with TWindow, TPalette
and etc. The back side of a CRC card in-
cludes its description and a list of its

attributes representing data the class must
keep track of.

With an automated tool, CRC card data
is entered into a property dialog, much like
writing it on a paper index card. One big
advantage in using a tool is that new cards
can be automatically created for you for
undefined superclass, subclass or collabo-
rating class references. Information can
easily be inserted, changed or deleted and
the card can be resized. When renaming a
card, all references on other cards are in-
stantly updated.

Figure 3: Back Side of CRC Card

To discover the data each class knows
about and the responsibilities it must per-
form, scenarios are created. A scenario is a
list of steps outlining the interaction be-
tween a group of classes to implement a
mechanism in the design. Below the sce-
nario name and description is three
columns titled Client, Server and Responsi-
bility. For each scenario step, a client class
uses a responsibility of a server class. A
scenario can be created with a paper index
card or by typing information into a tool’s
property dialog.

As an example, the Read Document
scenario is shown below. TDocument is a
class that holds data about a list of shapes
read from disk into memory. This scenario
has three steps starting with any client class
calling the Read responsibility of
TDocument. TDocument then uses the
Initialize and Read responsibilities of
TShape to create shape objects and read in
their data from disk.

PRERELEASE — NOT FOR PUBLIC DISTRIBUTION — ©1998 EXPOTECH, INC.

Figure 4: Scenario

During the early design process, devel-
opers usually focus on the normal
interactions between objects when creating
scenarios. Special situations often arise due
to error conditions that must be handled,
but usually these can be deferred until
detailed design. If an error condition is
significant to the overall design, it can be
dealt with as a separate scenario.

Scenarios can also refer to other sce-
narios. For example, the Open Document
scenario shown below uses two other sce-
narios, Initialize Document and Read
Document (illustrated above).

Figure 5: Scenario Using Other Scenarios

Designing an object-oriented system
using cards and scenarios is an iterative
refinement process. An automated tool
allows a designer to exercise part of a de-
sign expressed by a group of cards and
scenarios by using high level simulation.
The designer can single step forwards or
backwards through each design mechanism
to locate errors and make changes before
writing any code.

A Design Example
The following example will illustrate

the process of designing a program using
CRC cards with an automated tool. The
program to be designed allows the user to
edit a diagram using a tool palette for
drawing box and circle shapes. To model
this program, the designer creates a card for

each class, establishes relationships, assigns
responsibilities and attributes, defines and
simulates scenarios, checks the model for
errors and illustrates interesting relation-
ships between objects.

Create CRC Cards
A CRC model is usually created by an

individual or small group of designers
during the early phase of an object-oriented
development project. Each CRC card can be
added to a diagram workspace by clicking
with a palette tool and typing information
into a property dialog.

The Card Property dialog shown here
indicates that TShape has a superclass
called TObject and two subclasses, TBox
and TCircle. Each new superclass or
subclass card is added by typing its name
or selecting from a popup list of existing
cards. Each referenced class that doesn’t
already exist and corresponding superclass
and subclass relationships get added when
the dialog is dismissed.

Figure 6: Card Property Dialog

The CRC diagram below shows two
more classes TList and TWindow each
derived from the superclass TObject. Obvi-
ous relationships can be added at the
beginning of a CRC card session. However,
if designers are uncertain as to whether or
not a relationship exists, it is better to keep
classes separate, and see if a superclass or
collaboration relationship arises out of the
design scenarios. Assuming a relationship
too early may force a particular decision

PRERELEASE — NOT FOR PUBLIC DISTRIBUTION — ©1998 EXPOTECH, INC.

and bias the distribution of responsibilities.
The emphasis and strength of the CRC card
technique and responsibility driven design
in general lies in deriving the behavior of
the class and not the structure.

Figure 7: CRC Window

Assign Responsibilities
Once a set of classes are defined,

behaviors can be assigned that will provide
the functions of the application. Responsi-
bilities that are derived from the
requirements or that are obvious from the
name of the class can be listed before any
scenario execution commences. The re-
sponsibilities of a class are also referred to
as its functions, operations or methods.

For example, the TShape card has
responsibilities Initialize to create it, Free to
dispose of its memory, Read to load its data
from disk into memory, Write to save it to
disk and Draw to illustrate it on the dia-
gram. Give each responsibility a short
description that indicates what it accom-
plishes. Other responsibilities may be
discovered later after creating scenarios to
work through mechanisms in the design.

Add Attributes
Attributes of classes may also be iden-

tified early in a CRC session. Often, nouns
that are not classes but rather characteristics
of classes are best represented as attributes.
Attributes can be assigned to classes as they
are discovered, but should be done in mod-
eration and only when it becomes apparent
that the class must know that information.

The TShape class has attributes
fPosition, fType and fSelected. Each at-
tribute can be given a short description.
This information is added to the back of the
CRC card.

Figure 8: Back Side of TShape Card

Define a Scenario
A scenario describes a sequence of

steps in the design using the responsibilities
of a group of collaborating classes. Col-
laboration between classes refers to a client
object that uses a responsibility performed
by a server object. Often a class must call
upon several collaborating classes to imple-
ment one of its responsibilities. Assign
responsibilities to classes by exploring how
the system responds to external events.

Scenarios are detailed examples of the
functions of the system, where each func-
tion refers to visible, testable behavior. A
scenario describes what happens in the
system from a high-level, user point of
view. For example, the Open Document
scenario involves only those classes and the
subset of their responsibilities involved in
opening a disk document. The goal of
walking through scenarios is to discover
where additional classes, responsibilities

PRERELEASE — NOT FOR PUBLIC DISTRIBUTION — ©1998 EXPOTECH, INC.

and collaborations are required, or where
existing items have become redundant or
inconsistent.

Consider the scenario named Draw
Window. The TWindow class draws itself
by looping through a list of shapes in the
document drawing each one and then
drawing the tool palette. Each step in a
scenario has a Client, Server and Responsi-
bility field. For each step, a client class uses
a responsibility of a server class.

A designer adds each step in a scenario
to a property dialog by selecting class
names and responsibilities from a popup
list of what is already defined in the model.
A new class or responsibility can be added
to the model by typing its name.

Figure 9: Scenario Object on Diagram

Simulate Scenarios
Scenarios can use other scenarios to get

their work done. Initialize Document and
Read Document are both subscenarios
related to the server class TDocument. For
example, the Open Document scenario
references the Initialize Document
subscenario by specifying its server class
TDocument in the server field and its sce-
nario name in the Responsibility field. The
first step in the Initialize Document
subscenario uses TDocument as the server
class name.

Figure 10: Scenario Using Other Subscenarios

Figure 11: Path Through Subscenarios

Using an automated tool, a designer
can simulate a selected scenario. By single
stepping forwards, backwards or through
each subscenario, bugs in the design can be
identified and corrected early. An active
scenario list shows your position within a
hierarchical stack of scenarios. This list
helps you keep your bearings in a complex
simulation and allows you to change to a
different spot in the simulation path.

Partition The Design
As the number of CRC cards in the

design grows, they can be grouped by
function. In an automated tool, separate
diagrams are used to partition the model
into subject areas. The Contents view is
used to navigate or arrange cards between
diagrams. As illustrated below, the Con-
tents view has a folder icon that can expand
or collapse to represent each diagram level.

Figure 12: Contents View Showing Three
Diagram Levels

Inheritance Graph
An automated tool can generate an

inheritance graph from information on CRC
cards. This diagram can concisely illustrate
the big picture of a large project that might
contain hundreds of classes and dozens of
diagrams.

PRERELEASE — NOT FOR PUBLIC DISTRIBUTION — ©1998 EXPOTECH, INC.

Figure 13: Inheritance Graph Outlining Path to
TCircle

Verify Your Work
Creating and simulating scenarios will

help verify that a design is correct and
complete. An automated tool can perform
other error checks to locate design prob-
lems. For example, responsibilities that are
not used in any scenarios may indicate that
the design is incomplete or perhaps the
responsibility isn’t needed. Likewise, a
card that is not used by any collaboration
may not be needed.

Conclusion
CRC cards provide a simple approach

to identifying classes and related informa-
tion for an object-oriented development
project. Design scenarios identify how
mechanisms in the design work. An auto-
mated tool supports the process by
instantly updating references between cards
and scenarios, providing scenario simula-
tion, error checking, instant inheritance
graphs and making it easier to locate or
modify information.

An automated tool can generate text
reports to be used as a coding specification.
Information can be imported from or ex-
ported to other development tools. In
today’s world of instant communication
and pressing deadlines, the advantages of
electronic design documentation for peers,
reviewers or customers cannot be ignored.

About the Author
This white paper was written by

Harold Halbleib, product manager of soft-
ware engineering tools at Excel Software.
Excel Software produces tools for system
analysis, requirement specification, soft-
ware design, code generation and
reengineering that run on Windows 95/NT
and Macintosh computers. QuickCRC was
used to produce the examples in this paper.
It supports CRC cards, design scenarios
with simulation and inheritance graphs.

For more information on software
engineering tools for Macintosh or Win-
dows 95/NT or to download a trial version
of QuickCRC, see www.excelsoftware.com.

Excel Software
Ph. 515-752-5359
Fax 515-752-2435
Email: info@excelsoftware.com
Web: http://www.excelsoftware.com

Bibliography
Designing Object-Oriented Software, by

Rebecca Wirfs-Brock, Brian Wilkerson,
and Laura Wiener. Prentice Hall, 1990.

Using CRC Cards: An Informal Approach to
O-O Software Development, by Nancy M.
Wilkinson. SIGS Books, New York,
1995.

The CRC Card Book, by David Bellin and
Susan Suchman Simone, Addison
Wesley Longman, 1997.

